Движение заряженных частиц

Что означает Движение заряженных частиц и что это такое? В разделе Физика дан подробный ответ и объяснение на вопрос.

Здесь выложено готовое сочинение на тему Движение заряженных частиц, которое вы так же можете использовать как реферат.

Эту, поверенную нами работу, вы можете скачать бесплатно перейдя по ссылке, но если вам необходима другая готовая работа по данному предмету, например реферат или изложение, доклад, лекция, проект, презентация, эссе, краткое описание, биография писателя, ученого или другой знаменитости, контрольная, самостоятельная, курсовая, экзаменационная, дипломная или любая другая работа, с вашими индивидуальными требованиями, напишите нам и мы договоримся.

Наша небольшая команда бывших и действующих преподавателей и авторов со стажем работы от 5-ти лет всегда вам поможет. Всего нами написано и проверено более 10 000 различных работ на образовательные темы. С нами вы получите действительно качестенный материал с уникальным текстом и обязательно хорошую оценку. Удачи в учебе!

Содержание 1. Движение электрона в равномерном магнитном поле, неизменном во времени и направленном перпендикулярно скорости……………………..3

2. Движение электрона в неизменном во времени магнитном поле, когда скорость электрона не перпендикулярна силовым линиям……………….4

3. Фокусировка пучка электронов по­стоянным во времени

магнитным полем (магнитная линза)……………………………………….6

4. Движение электронов в равномерном электрическом поле. Принцип работы электронного осциллографа………………………………………...7

5. Фокусировка пучка электронов постоянным во времени

электриче­ским полем (электрическая линза)……………………………….8

6. Движение электрона в равномерных, взаимно перпендикулярных, неизменных во времени магнитном и электрическом полях………………9

7. Движение заряженных частиц в кольцевых ускорителях………………11

Движение заряженных частиц в магнитном и электрическом полях

1. Движение электрона в равномерном магнитном поле, неизменном во времени и направленном перпендикулярно скорости.

В данных разделах под заряженной частицей мы будем подразумевать электрон. Заряд его обозначим q=-qэ и массу m. Заряд примем равным qэ =1,601. 10-19 Кл, при скорости движения, значительно меньшей скорости света, масса m=0,91. 10-27 г. Полагаем, что имеет место достаточно высокий вакуум, так что при движении электрон не сталкивуается с другими частицами. На электрон, движущийся со скоростью в магнитном поле индукции, действует сила Лоренца .

На рис 1 учтено, что заряд электрона отрицателен, и скорость его направлена по оси y, а индукция по оси- x. Сила направлена перпендикулярно скорости и является центробежной силой. Она изменяет направление скорости, не влияя на числовое значение.

Электрон будет двигаться по окружности радиусом r с угловой частотой wц , которую называют циклотронной частотой . Центробежное ускорение равно силе f, деленной на массу .

Отсюда

(1)

Время одного оборота

Следовательно

(2)

2. Движение электрона в неизменном во времени магнитном поле, когда скорость электрона не перпендикулярна силовым линиям.

Рассмотрим два случая: в первом- электрон будет двигаться в равномерном, во втором – в неравномерном поле.

а) Движение в равномерном поле. Через a на рис 2. Обозначен угол между скоростью электрона и индукцией . Разложим на , направленную по и численно равную , и на , направленную перпендикулярно и численно равную . Так как , то наличие составляющей скорости не вызывает силы воздействия на электрон. Движение со скоростью приводит к вращению электрона вокруг линии подобно тому, как это было рассмотрено в первом пункте. В целом электрон будет двигатся по спирали рис. 2. б. Осевой линией которой является линия магнитной индукции. Радиус спирали шаг спирали

(3)

Поступательное и одновременно вращательное движение иногда называют дрейфом электрона.

Рис 2. б.

б) Движение в неравномерном поле. Если магнитное поле неравномерно, например сгущается ( рис.2 в.), то при движении по спирали электрон будет попадать в точки поля, где индукция В увеличивается. Но чем больше индукция В, тем при прочих равных условиях меньше радиус спирали r. Дрейф электрона будет происходить в этом случае по спирали со всем уменьшающимся радиусом. Если бы

магнитные силовые линии образовывали расходящийся пучок, то электрон при своем движении попадал бы в точки поля со все уменьшающейся индукцией и радиус спирали возрастал бы.

Рис 2. в.

3. Фокусировка пучка электронов по­стоянным во времени магнитным полем (магнитная линза).

Из катода электронного прибора (рис. 3) выходит расходящийся пучок электронов. Со скоростью электроны входят в неравномерное магнитное поле узкой цилиндрической катушки с током.

Разложим скорость электрона в произвольной точке т на две составляю­щие: и .

Первая направлена противоположно , а вторая -перпендикулярно . Возникшая ситуация повторяет ситуацию, рассмотренную в пункте 2. Электрон нач­нет двигаться по спирали, осью которой является . В результате электронный пучок фокусируется в точке b.

4. Движение электронов в равномерном электрическом поле. Принцип работы электронного осциллографа.

Электрон, пройдя расстояние от катода К до узкого отверстия в аноде А (рис. 4, а), под действием ускоряющего напря­жения Uак увеличивает свою кинетическую энергию на величину работы сил по­ля.

Скорость с которой электрон будет двигаться после выхода в аноде из отверстия 0, найдем из соотношения

При дальнейшем прямолинейном движении по оси х электрон попадает в равномерное электрическое поле, напряженностью Е между отклоняющими пластинами 1 и 2 (находятся в плоскостях, параллельных плоскости zох).

Напряженность Е направлена вдоль оси у. Пока электрон движется между от­клоняющимися пластинами, на него действует постоянная сила Fy = —qэ E. направленная но оси —у. Под действием этой силы электрон движется вниз рав­ноускоренно, сохраняя постоянную скорость вдоль оси х. В результате в про­странстве между отклоняющими пластинами электрон движется по параболе. Когда он выйдет из поля пластин 1—2. в плоскости уох он будет двигаться по касательной к пара­боле. Далее он попадает в поле пластин 3—4 , которые создают развертку во времени. Напряже­ние U 31 между пластинами 3—4 и напряженность поля между ними E1 линейно нарастают во времени (рис. 4, б). Электрон получает отклонение в направлении оси z, что и даст развертку во времени.

5. Фокусировка пучка электронов постоянным во времени электриче­ским полем (электрическая линза).

Фокусировка основана на том что, проходя через участок неравномерного электрического поля, электрон отклоняется в сто­рону эквипотенциали с большим значением потенциала (рис. 5, а). Электриче­ская линза образована катодом, испускающим электроны, анодом, куда пучок электронов приходит сфокусированным, и фокусирующей диафрагмой, пред­ставляющей собой пластинку с круглым отверстием в центре (рис. 5, б). Диа­фрагма имеет отрицательный потенциал по отношению к окружающим ее точ­кам пространства, вследствие этого эквинотенциали электрического поля как бы выпучиваются через

диафрагму по направлению к катоду. Электроны, проходя через отверстие в диафрагме и отклоняясь в сторону, фокусируются на аноде.

6. Движение электрона в равномерных, взаимно перпендикулярных, неизменных во времени магнитном и электрическом полях.

Пусть электрон с зарядом q= —qэ , и массой т с начальной скоростью оказался при t = 0 в начале, координат (рис. 6, а) в магнитном и электрическом полях. Магнитная индукция направлена по оси т. е. Bx =B. Напряжен­ность электрического поля направлена по оси , т. е. . Дви­жение электрона будет происходить в плоскости zoy со скоростью .

Уравнение движения или

Следовательно, ;

В соответствии с формулой (2) заменим qэ B/m на циклотронную частоту wц . Тогда

(4)

(5)

Продифференцируем (4) по t и в правую часть уравнения подставим (5).

(6)

Решим уравнение классическим методом: vy =vy пр +vy св :

Составим два уравнения для определения постоянных интегрирования.

Так как при t=0 vy =v, то . При t=0 vz =0. Поэтому или. Отсюда и .

Таким образом,

Пути, пройденные электроном по осям у и z:

На рис. 6, б, в, г изображены три характерных случая движения при различных значениях v0 . На рис. 6, б трохоида при v0 =0, максимальное от­клонение по оси z равно .

Если v0 >0 и направлена по оси +y, то траекторией является растянутая

трохоида (рис. 6, в) с максимальным отклонением .

Если v0 <0 и направлена по оси —у, то траекторией будет сжатая трохоида (рис. 6, г) с .

Когда магнитное и электрическое поля мало отличаются от равномерных, траектории движения электронов близки к трохоидам.

Рис 6.б

Рис 6.в

Рис 6.г

7. Движение заряженных частиц в кольцевых ускорителях.

Циклотрон представляет собой две полые камеры в виде полуцилиндров из проводящего неферромагпитного материала. Эти камеры находятся в сильном равномерном маг­нитном поле индукции , направленном на рис. 7 сверху вниз. Камеры по­мещают в вакуумированный сосуд (на рисунке не показан) и присоединяют к ис­точнику напряжения Um cos(wt). При t=0, когда напряжение между камерами имеет максимальное значение, а потенциал левой камеры положителен по отношению к правой, в пространство между камерами вводят положительный заряд q. На него будет действовать сила . Заряд начнет двигаться слева направо и с начальной скоростью пойдет и правую камеру. Но внутри камеры напряжен­ность электрического поля равна нулю. Поэтому, пока он находится там. на не­го не действует сила, но действует сила , обусловленная магнитным полем. Под действием этой силы положительный заряд, двигающийся со скоростью v, начинает
движение по окружности радиусом . Время, в течение которого он совершит пол-оборота,. Если частоту приложенного между камерами напря­жения взять равной , то к моменту времени, когда заряд выйдет из правой камеры, он окажется под воздействием электрического поля, на­правленного справа налево. Под действием этого поля заряд увеличивает свою скорость и входит в левую камеру, где совершает следующий полуоборот. но уже большего радиуса, так как имеет боль­шую скорость. После k полуоборотов заряженная частица приобретает такую скорость и энергию, ка­кую она приобрела бы, если в постоянном электриче­ском поле пролетела бы между электродами, раз­ность потенциален между которыми kUm . На рис 8. показано движение заряженных частиц в циклотроне.

Рис 8.

Вывод заряда из циклотрона осуществляется с помощью постоянного электрического поля, созда­ваемого между одной из камер (на рис. 7 пра­вой) и вспомогательным электродом А. С увеличением скорости она становится соизмеримой со скоростью света, масса частицы т во много раз увеличивается. Возрастает и время t1 , прохождения полуоборота. Поэтому одновременно с увеличением скорости частицы необходимо уменьшать либо частоту источника напряжения Um cos(wt) (фазотрон), либо величину индукции магнитного поля (синхротрон), либо частоту и индукцию (синхрофазотрон).

Подобные материалы

Расчет ЛЭП с учетом климатических условий
На работу высоковольтных линий влияют сочетания низких температур с наибольшими скоростями ветра, а
Сонячні батареї
Роль мсце сонячно енергетики сьогодення та перспективи розвитку в свт та в Укран. Будова та принцип
Влияние граничных условий на критическую температуру неоднородных сверхпроводящих мезоструктур
Анализ современных исследований неоднородных сверхпроводящих мезоструктур. Сущность и особенности
Определение параметров косинусного излучателя
Федеральное агентство связи Сибирский Государственный Университет Телекоммуникаций и Информатики
Манометры
ДОКЛАД На тему: МАНОМЕТРЫ ученика 7 класса В Янович Сергея Манометры (от греч. manos - редкий,