СМО с отказами

Что означает СМО с отказами и что это такое? В разделе Математика дан подробный ответ и объяснение на вопрос.

Здесь выложено готовое сочинение на тему СМО с отказами, которое вы так же можете использовать как реферат.

Эту, поверенную нами работу, вы можете скачать бесплатно перейдя по ссылке, но если вам необходима другая готовая работа по данному предмету, например реферат или изложение, доклад, лекция, проект, презентация, эссе, краткое описание, биография писателя, ученого или другой знаменитости, контрольная, самостоятельная, курсовая, экзаменационная, дипломная или любая другая работа, с вашими индивидуальными требованиями, напишите нам и мы договоримся.

Наша небольшая команда бывших и действующих преподавателей и авторов со стажем работы от 5-ти лет всегда вам поможет. Всего нами написано и проверено более 10 000 различных работ на образовательные темы. С нами вы получите действительно качестенный материал с уникальным текстом и обязательно хорошую оценку. Удачи в учебе!

СМО с отказами (задача Эрланга)

Рассматривается N-канальная СМО с отказами:

λпотерь

λобслуживания

υ

υ

υ

λ

ОА1

ОА2

ОАn

G

Любая заявка может быть обслужена любым свободным каналом. Если все каналы заняты, заявка немедленно получает отказ в обслуживании и покидает систему (теряется). Интенсивности входных и выходных потоков:

Считаем, что в этой системе имеются следующие потоки событий:

1) поступление заявок на вход СМО из источника заявок G;

2) обслуживание заявок в каналах.

Будем считать, что первый и второй потоки событий являются простейшими потоками с экспоненциальными законами распределения. Интервал поступления и обслуживания заявок соответственно имеют следующие характеристики:

1) интенсивность потока поступающих заявок характеризуется λ

2) интенсивность обслуживания одним каналом:

- мат.ожидание длительности обслуживания

Т.о. входной поток с интенсивностью λ и поток обслуживания с интенсивностью µ распределены по экспоненциальному закону и следовательно данные потоки являются простейшими, а сами процессы в системе Марковскими. Представим граф схему переходов для этого случая:

Состояния СМО в данном случае нумеруются по числу заявок, находящихся в СМО (в силу отсутствия очереди состояния, в котором находится система, совпадает с числом занятых каналов)

S0 - все каналы свободны, система свободна

S1 - занят один канал

Sk - заняты k каналов, остальные (n-k) свободны

Sn - заняты все n каналов

µ

(n-1)µ

λ

λ

λ

λ

λ

λ

S0

S1

S2

Sk

Sn-1

Sn

Из состояния Si-1 всегда с интенсивностью входного потока λ система переходит в следующее состояние Si, т.е. в данном случае будет заняе еще один канал и интенсивность перехода в следующее состояние равно интенсивности входного потока λ. Интенсивность обратного перехода возрастает с ростом числа параллельно работающих каналов. Чем больше их работает, тем интенсивнее процесс их освобождения. Для простейших потоков имеем:

Данная схема называется схемой гибели и размножения. Такое название происходит от того, что связаны соседние состояния. Математический аппарат - это Марковский процесс, с дискретными состояниями и непрерывным временем. Для заданной СМО матрица интенсивностей Λ имеет вид:

Пользуясь матрицей Λ запишем уравнения, которые позволяют рассчитать вероятности пребывания системы в каждом из указанных состояний. Распределение вероятностей P0,P1,…,Pn по состояниям S0,…,Sn определяется как решение системы дифференциальных уравнений.

P’(t)=P(t)Λ с начальными условиями:

P0(0)=1

Pi(0)=0, i=1,n;

Эти уравнения называются уравнениями Эрланга. Вероятности Рi характеризуют среднюю загрузку системы, в частности, Pn - это вероятность получения отказа в обслуживании, т.е. вероятность того, что все каналы заняты и все поступающие заявки будут потеряны. Тогда q=1-Pn - это вероятность обслуживания.

Зная эти вероятности, можно рассчитать различные характеристики эффективности системы.

А - среднее число заявок, обслуживаемых СМО в единицу времени или абсолютная пропускная способность СМО

Q - относительная пропускная способность СМО или вероятность обслуживания поступившей заявки

Подобные материалы

Применение дифференциального и интегрального исчисления к решению физических и геометрических задач в MATLab
История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению
Гравитация - изменчивое Время
На опыте обнаруживается, что часы, находящиеся вблизи массивного тела, идут медленнее, чем такие же
История развития понятия "функция"
Функция — одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет
Исследование заряженных аэрозолей электрооптическим методом
Значительная доля пылевых частиц, находящихся в реальной атмосфере, в космическом пространстве или
Поверхности
Основные признаки поверхности. Эллипсоид: понятие плоскости симметрии. Сфера как замкнутая