Универсальный музыкальный строй

Что означает Универсальный музыкальный строй и что это такое? В разделе Музыка дан подробный ответ и объяснение на вопрос.

Здесь выложено готовое сочинение на тему Универсальный музыкальный строй, которое вы так же можете использовать как реферат.

Эту, поверенную нами работу, вы можете скачать бесплатно перейдя по ссылке, но если вам необходима другая готовая работа по данному предмету, например реферат или изложение, доклад, лекция, проект, презентация, эссе, краткое описание, биография писателя, ученого или другой знаменитости, контрольная, самостоятельная, курсовая, экзаменационная, дипломная или любая другая работа, с вашими индивидуальными требованиями, напишите нам и мы договоримся.

Наша небольшая команда бывших и действующих преподавателей и авторов со стажем работы от 5-ти лет всегда вам поможет. Всего нами написано и проверено более 10 000 различных работ на образовательные темы. С нами вы получите действительно качестенный материал с уникальным текстом и обязательно хорошую оценку. Удачи в учебе!

Мы подошли непосредственно к вопросу о формировании универсального музыкального строя. Каким же условиям он должен удовлетворять?

Основные требования были выработаны еще в процессе формирования 12-ступенного равномерно-темперированного строя. Другие вытекают из результатов полученных Н. А. Гарбузовым в исследованиях по звуковысотному интонированию музыкальных интервалов.

Рассмотрим их подробно.

1. Требование равномерной темперации.

Это условие определилось в 17-18 веках, в процессе поиска системы настройки музыкальных инструментов с фиксированным строем, которая обеспечивала бы сохранение звуковысотных настроечных отношений между 12 музыкальными ступенями в любой тональной системе, то есть свободу модуляции и транспонирования в любую тональность без необходимости перестраивать музыкальный инструмент с фиксированной высотой звуков. Если коротко, то равномерная темперация обеспечивает решение проблемы объединения в одной системе: линейности в отношениях между основным тоном и обертонами, с одной стороны, и нелинейности в восприятии одноименных звуковых интервалов, с другой.[1].

Математически отношение между высотами двух соседних ступеней при равномерной темперации равно 21/n, где 2 – отношение между начальными ступенями двух соседних октав, n – число ступеней в октаве.

2. Ширина функциональной зоны музыкального интервала.

В 12-ступенном равномерно-темперированном строе функциональная зона, то есть расстояние между соседними ступенями равно 100 центам. В то же время, ширина зоны интонирования музыкального интервала, в которой он сохраняет свое гармоническое качество, равна 60 центам. Отсюда вытекает требование: расстояние между соседними ступенями должно быть в районе 60 центов. Если оно будет больше, то часть звуков из октавного спектра не попадет в функциональную зону ступени (интервала), если – меньше, то часть звуков могут интонироваться от разных ступеней, что будет размывать дифференциацию между ними.

3. Требование минимизации ошибки в настройке квинты.

Абсолютная точность в обеспечении настройки квинты на отношение 3/2 (1,5) невозможна, при сохранении требования равномерной темперации. Поэтому, исходя из данных практики настройки музыкальных инструментов, определим эту ошибку не более 6-8 центов.

4. Требование точности настройки остальных консонантных интервалов.

Требование более точной настройки таких интервалов, как малая и большая терции, малая и большая сексты, является скорее предпочтительным, чем необходимым, но его также желательно учитывать.

Исходя из требований по настройке квинты мы получим следующее неравенство:

1,4955 < 2k/n< 1,5045, где:

- k – номер квинтовой ступени;

- n – число ступеней в октаве;

Данным условиям, кроме 12-ступенного, отвечают 17, 19 и 22-ступенные строи (все равномерно-темперированные).

Каждый из строев дает следующие ошибки в настройке квинты: 17-ступенной – + 3,5 цента, 19 – - 7,6 цента, 22 – + 6,7 цента. По настройке терций и их обращений наиболее точен 22-ступенной строй. Также этот строй дает наиболее оптимальное соотношение между функциональной зоной ступени (54,5 цента) и зоной интонирования (60 центов). По сравнению с 24-ступенным строем 22-ступенной позволяет разделить по разным ступеням специфические гармонические значения большой терции 5/4 (8 ступень) и 9/7 (9 ступень) и обеспечивает существенно более точную настройку музыкальных интервалов на эти значения.

В связи с этим, он выглядит наиболее предпочтительным.

Необходимо отметить, что остальные строи мы не отрицаем, они также интересны в плане реализации. Но эти три строя существуют в музыкальной практике арабской и индийской музыкальных культур в виде теоретических строев. И они возникли также в процессе слухового отбора, как и 12-ступенной, строй. В арабской музыкальной культуре это 17-ступенной и 19-ступенной строи, в индийской – 22-ступенной строй. Они не являются равномерно-темперированными и не реализуются в полном объеме для настройки музыкальных инструментов, но интересен сам вопрос об их возникновении и становлении, так как эти строи предоставляют гораздо больше возможностей в создании гармонических сочетаний, чем 12-ступенной, и их исследования еще предстоят.

Вернемся к 22-ступенному строю. В таблице 1 указаны его основные характеристики. Как мы видим, он дает высокую точность настройки большой терции на интервальный коэффициент 5/4 – ошибка составляет 4,4 цента. Но не это главное. Этот строй, который мы назвали универсальным, разносит по разным музыкальным интервалам звуковые с такими характерными интервальными коэффициентами, как 5/4 и 9/7, 6/5 и 7/6, 9/5 и 7/4 и другие, что повышает звуковысотную определенность музыкальных интервалов в нем. Кроме того, в 22-ступенном строе возможна реализация звуковых интервалов с такими интервальными коэффициентами, как 11/8 и 13/8. Мы выделяем их потому, что в 12-ступенном строе они не могут быть реализованы (как и многие другие), так как находятся вне зон интонирования кварты и тритона – для первого, и тритона и квинты – для второго. В то же время мы исходим из предположения, что они воспринимаются человеческим слухом и могут использоваться в гармонических оборотах так же, как интервалы, образуемые путем соединения через 2, 3, 5 и 7 обертоны и их «производные»[2]. То есть, 22-ступенной строй обеспечивает расширение интонационной сферы.

12-ступенной строй не позволяет выйти за границы, обозначенные указанными обертонами. Они являются пределом этого строя. В то же время необходимо отметить, что и 22-ступенной строй не является беспредельным, но по иным причинам.

В 12-ступенном строе 30-40 % звуковых интервалов находятся вне зон интонирования музыкальных интервалов, то есть в промежуточных зонах, и это является причиной невозможности их воспроизведения в этом строе. В 22-ступенном строе промежуточные зоны отсутствуют. Но если мы захотим представить, например, интервал 1-9 в качестве звукового с коэффициентом 22/17, то без соответствующего гармонического окружения этого добиться невозможно. В связи с принципом минимизации наш слух будет сводить этот интервал к наиболее простому отношению, а именно, 9/7. Поэтому многие звуковые интервалы мы не сможем воспроизвести только из-за невозможности гармонически организовать соответствующую им музыкальную ткань. Это ограничение относится не только к 22-ступенному строю, но и к строям с большим количеством ступеней. В связи с этим можно сказать, что 22-ступенной строй является пределом в развитии музыкальных строев.

Конечно, возникает вопрос, как изменяется звучание музыкальных произведений написанных в 12-ступенном строе, после их переложения в 22-ступенной.

Мной был выполнен ряд таких переложений для произведений разных направлений и эпох (приводятся в отдельном разделе).

Таблица 1. (Границы функциональной зоны даны только верхние, так как они же являются и нижними для выше прилежащей ступени; жирное выделение в характерных интервалах сделано только для лучшего распознавания)

Номер ступени

Отношение к

1-ой ступени

Границы функциональной зоны Характерные звуковые интервалы входящие в зоны интонирования ступеней
1 1

1,016

1
2 1,032

1,048

22/21, 25/24, 28/27
3 1,065

1,082

14/13, 15/14, 16/15, 17/16, 18/17, 19/18
4 1,099

1,167

10/9, 11/10, 12/11, 13/12, 35/32
5 1,134

1,152

8/7, 9/8, 17/15, 19/17
6 1,171

1,189

7/6, 13/11, 15/13, 19/16, 20/17, 22/19, 32/27
7 1,208

1,227

6/5, 11/9, 17/14
8 1,247

1,267

5/4, 16/13, 24/19
9 1,287

1,307

9/7, 13/10, 14/11, 19/15, 22/17
10 1,328

1,349

4/3, 17/13, 21/16
11 1,37

1,392

11/8, 15/11, 18/13, 19/14, 27/20
12 1,414

1,437

7/5, 10/7, 17/12, 24/17
13 1,46

1,483

13/19, 16/11, 19/13, 22/15, 28/19
14 1,506

1,53

3/2, 26/17, 32/21
15 1,554

1,579

11/7, 14/9, 17/11, 20/13, 25/16, 30/19
16 1,604

1,63

8/5, 13/8, 19/12
17 1,656

1,682

5/3, 18/11, 28/17
18 1,709

1,736

12/7, 17/10, 19/11, 22/13, 26/15, 27/16, 30/19
19 1.763

1,791

7/4, 16/9, 25/14, 30/17, 34/19
20 1,82

1,849

9/5, 11/6, 20/11, 24/13
21 1,878

1.908

13/7, 15/8, 17/9, 19/10, 28/15, 32/17, 36/19, 40/21
22 1,938

1,969

48/25, 21/11, 27/14

[1] Более подробно о причинах и процессе перехода к равномерно-темперированному строю см. Шерман Н. С. Формирование равномерно-темперированного строя. М., 1964.

[2] Под производными мы понимаем интервальные отношения, в которых используются простые числа, перемноженные между собой. Например, 9/8=(3)2/(2)3, 15/8=(3*5)/(2)3. Данное представление неверно, так как 9 и 15 обертоны существуют сами по себе. В связи с этим мы взяли слово «производные» в кавычки.

Подобные материалы

Музыка
Общая музыкальная теория. История музыки, основные музыкальные понятия. Музыкальные жанры и великие
"Ave Maria" Шуберта
История создания песни. Город Гмунден . Текст песни. Красота песни. Графиня Софи Габриэль фон
Жорж Бизе
Здесь даны краткое описание творческого пути французского композитора 19в. Жоржа Бизе, а также его
Творческие открытия композитора А. Н. Скрябина
Творчество и биография. Три периода творческой жизни. Дружба со знаменитым дирижером С. А.
Арабский уд - исторический предшественник европейской лютни
Самые ранние сведения о музыкальной практике и музыкальной жизни арабов восходят в Хиджаз. Хиджаз