Исследование устойчивости и качества процессов управления линейных стационарных САУ

Что означает Исследование устойчивости и качества процессов управления линейных стационарных САУ и что это такое? В разделе Радиоэлектроника дан подробный ответ и объяснение на вопрос.

Здесь выложено готовое сочинение на тему Исследование устойчивости и качества процессов управления линейных стационарных САУ, которое вы так же можете использовать как реферат.

Эту, поверенную нами работу, вы можете скачать бесплатно перейдя по ссылке, но если вам необходима другая готовая работа по данному предмету, например реферат или изложение, доклад, лекция, проект, презентация, эссе, краткое описание, биография писателя, ученого или другой знаменитости, контрольная, самостоятельная, курсовая, экзаменационная, дипломная или любая другая работа, с вашими индивидуальными требованиями, напишите нам и мы договоримся.

Наша небольшая команда бывших и действующих преподавателей и авторов со стажем работы от 5-ти лет всегда вам поможет. Всего нами написано и проверено более 10 000 различных работ на образовательные темы. С нами вы получите действительно качестенный материал с уникальным текстом и обязательно хорошую оценку. Удачи в учебе!

МАИ

кафедра 301

Лабораторная работа №2

по курсу

“Основы теории автоматического управления”.

Исследование устойчивости и качества процессов

управления линейных стационарных САУ.

группа 03-302 Домнинский М.А.

М.1996.

Задание.

Дана структурная схема

Ку Ка /(Та S+1) Kk /(T2k S2 +2xTk S+1) Y

1)Рассчитать диапазон измерения Ку , в котором САУ устойчива.

2)Показать характер распределения корней характеристического уравнения замкнутой системы и характер переходной функции системы по управляемой переменной (у) на границах устойчивости и вблизи них.

3)Промоделировать САУ (наблюдать процессы на границах вблизи них, сравнить результаты расчета и результаты моделирования.) Сделать выводы.

4)Оформить результаты расчета и результаты моделирования.

Критерий Найквиста.

W(S)=Ky K1 / (T1 jw+1)*K2 / (T2 (jw)2 +2xT1 jw+1) K1 =2

K2 =1,5

W(S)=Ky *2*1,5/(0,01jw+1)(-0,022 w2 +0,04*0,2jw+1)= T1 =0,01

T2 =0,02

=3Ky /(-(0,02)2 w2 +0,008jw+1-0,04*10-4 jw3 -w2 0,08*10-3 +0,01jw)= x=0,2

=3Ky /((-(0,02)2 w2 +1-0,08*10-3 w2 )+j(0,018w-0,04*10-4 w3 ))

c d

Kd=0 3Ky (0,018w-0,04*10-4 w3 )=0

Þ

K/c=-1 3ky /(-(0,02)2 w2 +1-0,08*10-3 w2 )=-1

3Ky (0,018w-0,04*10-4 w3 )=0

1)w=0

2)0.018=0,04*10-4 w2

w2 =4500

Ky1 =-(-(0,02)2 w2 +1-0,08*10-3 w2 )/3=-1/3 (w=0)

Ky2 =-(-(0,02)2 w2 +1-0,08*10-3 w2 )/3=-(-(0,02)2 *4500-0,08*10-3 *4500+1)/3=0,3866»0,387

МАИ

кафедра 301

Лабораторная работа №3

по курсу

“Основы теории автоматического управления”

Выделение областей устойчивости в плоскости

двух параметров системы.

группа 03-302 Домнинский М.А.

М.1995

Задание.

Дана структурная схема САУ

Ку Ка /(Та S+1) Kk /(T2k S2 +2xTk S+1) Y

1)Исследовать влияние коэффициента передачи Ку и Т1 на устойчивость методом D-разбиения.

2)Объяснить, почему при Т1 ®0 и Т1 ®¥ система допускает неограничено увеличить Ку без потери устойчивости.

3)Промоделировать САУ и найти экспериментально значения Ку по крайней мере для 3 значений Т1 (устойчив.)

4)Сделать выводы.

1)W(S)=Ky K1 K2 /(T1 S+1)(T22 S2 +2xT2 S+1)

A(S)= Ky K1 K2 +(T1 S+1)(T22 S2 +2xT2 S+1)= Ky K1 K2 +T1 (T2 S2 +2xT2 S+1)+T2 S2 +2xT2 S+1

S=jw

Ky (K1 -K2 )+T1 (T1 S3 +2xT2 S2 +S)+T2 S2 +2xT2 S+1

P(S) Q(S) S(S)

P(jw)=P1 (w)+jP2 (w)

Q(jw)=Q1 (w)+jQ2 (w)

S(jw)=S1 (w)+jS2 (w)

P1 =K1 K2 P2 =0 Q2 =-T1 w3 +w Q1 =-2xT2 w2 S1 =-T2 w2 +1 S2 =2xT2 w

P1 (w) Q1 (w)

D(w)=

P2 (w) Q2 (w)

-S1 (w) Q1 (w)

Dm (w)=

-S2 (w) Q2 (w)

P1 (w)-S1 (w)

Dn (w)=

P2 (w)-S2 (w)

D(w)=K1 K2 w(-T22 w2 +1)¹0

1) 0<w<1/T2 D>0

1/T2 <w<¥D<0

Ky K1 K2 +T1 (-2xT2 w2 ‑)-T2 w2 +1=0

T1 (-T2 w3 +w)+2xT2 w=0

Ky K1 K2 -T1 T2 2xw2 - T2 w2 +1=0

-T1 T2 w3 +T1 w=-2xT2 w

T1 =-2xT2 w/(-T2 w3 +w)=2xT2 /(T2 w2 -1) , w¹0

Ky =(T1 T2 2xw2 +T2 w2 -1)/K1 K2 =(2xT2 /(T2 w2 -1)*T2 2xw2 +T2 w2 -1)/K1 K2

Асимптоты:

y=ax+b a=K1 K2 T2 /2x2 =0.15

b= -T2 x2 =4*10-3

y=0.15x-4*10-3 - наклонная асимптота

Т1 =0 -горизонтальна яасимптота

w=0 , К­у =1/3

Определение устойчивости :

В области IY кол-во корней 2-3 , а т.к. система 3-го порядка Þв этой обласи 0 корнейÞ r=3 Þ области I и YII - устойчивы

2) при Т1 ®0 и Т1 ®¥ при любом Ку система находится в зоне устойчивости.

3) Т1 =8*10-3 Ку1 =0.71

Т2 =16*10-3 Ку2 =0.39

Т3 =24*10-3 Ку3 =0.37

Вывод. Найденные при моделировании коэффициенты Ку согласуются с теоретическими расчетами .

Подобные материалы

Расчет погрешности вольтметра
ЗАДАНИЕ Выбрать цифровой вольтметр для измерения напряжения постоянного тока (рис. 1) с учётом R и
ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СВЧ ИНТЕГРАЛЬНЫХ УСТРОЙСТВ
1. Особенности СВЧ микроэлектронных устройств В диапазон СВЧ микроэлектроника начала внедряться в
Расчет униполярного транзистора
Содержание Стр. 1 Принцип действия полевого транзистора 2 Вольт-фарадная характеристика
Ремонт, наладка, защитной аппаратуры токарно-винторезного станка 163 модели
Мнстерство освти Украни Кременчутське ВПУ 7 КУРСОВА РОБОТА ТЕМА: Обслуговування та ремонт силового
Передающий модуль бортового ретранслятора станции активных помех
Московский ОРДЕНА ЛЕНИНА И ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ Авиационный Институт имени СЕРГО